Anúncios




(Máximo de 100 caracteres)


Somente para Xiglute - Xiglut - Rede Social - Social Network members,
Clique aqui para logar primeiro.



Faça o pedido da sua música no Xiglute via SMS. Envie SMS para 03182880428.

Blog

Artificial-Intelligence-Foundation Der beste Partner bei Ihrer

  • Es existiert viele Methoden, mit der Sie sich auf die APMG-International Artificial-Intelligence-Foundation Zertifizierungsprüfung vorzubereiten. Unsere Website bietet zuverlässige Prüfungsmaterialien, mit den Sie sich auf die nächste APMG-International Artificial-Intelligence-Foundation Zertifizierungsprüfung vorbereiten. Die Lernmaterialien zur APMG-International Artificial-Intelligence-Foundation Zertifizierungsprüfung von PrüfungFrage enthalten sowohl Fragen als auch Antworten. Unsere Materialien sind von der Praxis überprüfte Software. Wir werden alle Ihren Bedürfnisse zurAPMG-International Artificial-Intelligence-Foundation Zertifizierung abdecken.

    Die APMG-International Artificial-Intelligence-Foundation-Prüfung ist eine Einstiegszertifizierung, die für Fachleute geeignet ist, die sich für KI interessieren und Grundkenntnisse darüber erwerben möchten. Sie ist auch ideal für diejenigen, die eine Karriere in der KI anstreben und die notwendigen Fähigkeiten und Kenntnisse erwerben möchten, um in diesem Bereich erfolgreich zu sein.

    >> Artificial-Intelligence-Foundation Deutsch <<

    Artificial-Intelligence-Foundation Dumps und Test Überprüfungen sind die beste Wahl für Ihre APMG-International Artificial-Intelligence-Foundation Testvorbereitung

    Während die meisten Menschen denken würden, dass die APMG-International Artificial-Intelligence-Foundation Zertifizierungsprüfung schwer zu bestehen ist. Aber wenn Sie PrüfungFrage wählen, ist es doch leichter, ein APMG-International Artificial-Intelligence-Foundation Zertifikat zu bekommen. Die Prüfungsunterlagen von PrüfungFrage sind ganz umfangreich. Sie enthalten sowohl Online Tests als auch Kundendienst. Bei Online Tests geht es um die Prüfungssmaterialien, die Simulationsprüfungen und Fragen und Antworten zur APMG-International Artificial-Intelligence-Foundation Zertifizierungsprüfung enthalten. Der Kundendienst von uns bietet nicht nur die neuesten Fragen und Antworten, sondern auch dynamische Nachrichten zur APMG-International Artificial-Intelligence-Foundation Zertifizierung.

    Einer der wichtigsten Vorteile der APMG-International Artificial-Intelligence-Foundation-Zertifizierungsprüfung besteht darin, dass sie eine standardisierte Plattform für Einzelpersonen und Unternehmen bietet, um ihr Wissen über KI zu demonstrieren. Diese Zertifizierung kann als Benchmark verwendet werden, um die Fähigkeiten und Kenntnisse potenzieller Mitarbeiter von Arbeitgebern zu bewerten, sowie um Einzelpersonen ihr Verständnis von KI gegenüber Kunden und Kollegen zu demonstrieren.

    APMG-International Foundation Certification Artificial Intelligence Artificial-Intelligence-Foundation Prüfungsfragen mit Lösungen (Q22-Q27):

    22. Frage
    An agent based model is a simul-ation of autonomous agents (individual and collective). What can be used to learn from the data generated by the simul-ations?

    • A. Python.
    • B. Machine Learning.
    • C. Paraview.
    • D. A spreadsheet

    Antwort: B

    Begründung:
    Explanation
    An agent based model is a simulation of autonomous agents (individual and collective). Machine learning can be used to learn from the data generated by the simulations. Machine learning algorithms can analyze the data generated by simulations and identify patterns, which can then be used to help the agent make decisions and take actions. References:
    [1] BCS Foundation Certificate In Artificial Intelligence Study Guide, "Simulation and Modelling", p.101-104.
    [2] APMG-International.com, "Foundations of Artificial Intelligence" [3] EXIN.com, "Foundations of Artificial Intelligence"


    23. Frage
    What technique can be adopted when a weak learners hypothesis accuracy is only slightly better than 50%?

    • A. Over-fitting
    • B. Iteration.
    • C. Boosting.
    • D. Activation.

    Antwort: C

    Begründung:
    Explanation
    * Weak Learner: Colloquially, a model that performs slightly better than a naive model.
    More formally, the notion has been generalized to multi-class classification and has a different meaning beyond better than 50 percent accuracy.
    For binary classification, it is well known that the exact requirement for weak learners is to be better than random guess. [...] Notice that requiring base learners to be better than random guess is too weak for multi-class problems, yet requiring better than 50% accuracy is too stringent.
    - Page 46, Ensemble Methods, 2012.
    It is based on formal computational learning theory that proposes a class of learning methods that possess weakly learnability, meaning that they perform better than random guessing. Weak learnability is proposed as a simplification of the more desirable strong learnability, where a learnable achieved arbitrary good classification accuracy.
    A weaker model of learnability, called weak learnability, drops the requirement that the learner be able to achieve arbitrarily high accuracy; a weak learning algorithm needs only output an hypothesis that performs slightly better (by an inverse polynomial) than random guessing.
    - The Strength of Weak Learnability, 1990.
    It is a useful concept as it is often used to describe the capabilities of contributing members of ensemble learning algorithms. For example, sometimes members of a bootstrap aggregation are referred to as weak learners as opposed to strong, at least in the colloquial meaning of the term.
    More specifically, weak learners are the basis for the boosting class of ensemble learning algorithms.
    The term boosting refers to a family of algorithms that are able to convert weak learners to strong learners.
    https://machinelearningmastery.com/strong-learners-vs-weak-learners-for-ensemble-learning/ The best technique to adopt when a weak learner's hypothesis accuracy is only slightly better than 50% is boosting. Boosting is an ensemble learning technique that combines multiple weak learners (i.e., models with a low accuracy) to create a more powerful model. Boosting works by iteratively learning a series of weak learners, each of which is slightly better than random guessing. The output of each weak learner is then combined to form a more accurate model. Boosting is a powerful technique that has been proven to improve the accuracy of a wide range of machine learning tasks. For more information, please see the BCS Foundation Certificate In Artificial Intelligence Study Guide or the resources listed above.


    24. Frage
    Healthcare can benefit from Al, and in particular Machine Learning, an example of which is?

    • A. Autonomous wheelchairs.
    • B. Diagnostic image analysis
    • C. Autonomous vehicles.
    • D. Automated blood sampling.

    Antwort: B

    Begründung:
    Explanation
    Healthcare can benefit from AI, and in particular Machine Learning, in a number of ways. One example is diagnostic image analysis, which can help to automatically identify and classify abnormalities in medical images such as X-rays, CT scans, and MRI scans. Machine Learning algorithms can be used to detect patterns in the data which can be used to accurately diagnose diseases and illnesses.
    References:
    [1] https://www.bcs.org/upload/pdf/foundation-certificate-ai-syllabus-v1.pdf [2] https://www.apmg-international


    25. Frage
    Who was the pioneer of computer programming?

    • A. Karen Spark Jones.
    • B. Sophie Wilson
    • C. Dame Wendy Hall.
    • D. Ada Lovelace.

    Antwort: D

    Begründung:
    Explanation
    https://www.techopedia.com/2/31564/watercooler/ada-lovelace-enchantress-of-numbers Ada Lovelace was an English mathematician and writer who is widely credited as the pioneer of computer programming. In 1842, she wrote an article in which she outlined the fundamental principles of computing, making her the first person to recognize the potential of computers and to describe algorithms that could be used to program them. Her work laid the basis for modern computing and is recognized as one of the most significant contributions to the field of computing.
    References: https://www.bcs.org/more/certifications/foundation-certificate-in-artificial-intelligence/ https://www


    26. Frage
    Splitting data into Training and Test data sets is part of what?

    • A. Machine learning post processing.
    • B. High performance computing strategy.
    • C. Batch learning.
    • D. Machine learning data preparation.

    Antwort: D

    Begründung:
    Explanation
    Splitting data into training and test data sets is an important step in the machine learning data preparation process. This process involves splitting the data into subsets, usually in a 70:30 ratio, to create a training set and a test set. The training set is used to train the machine learning model, while the test set is used to evaluate the model's performance. This process allows for the model to be tested and evaluated on data that it has not seen before, in order to ensure that it is accurate and able to generalize to new data. References: BCS Foundation Certificate In Artificial Intelligence Study Guide, https://bcs.org/certifications/foundation-certificates/artificial-intelligence/


    27. Frage
    ......

    Artificial-Intelligence-Foundation Musterprüfungsfragen: https://www.pruefungfrage.ga/Artificial-Intelligence-Foundation-dumps-deutsch.html